Fall of Grace

My city looks most beautiful in autumn. Credit goes to the trees lining the streets – Maples, Ginkgo, Claret Ash, Red Oak, Japanese Pagoda, American Sweet Gum, Chinese Pistachio, English Elm, and many more – and the shades of yellow, orange, brown and red their leaves transform into.

These temperate deciduous trees shed their leaves after changing colour from the normal green. This annual fanfare rekindles in me a line from Tagore’s song “jharaa paata go”:

“jharaa paata go basanti rang diye
shesher beshe sejechho tumi ki e”
[Fallen leaves, what colourful parting dress you have adorned yourselves with!]

Science has figured out the what and how of autumn colours and is still trying to make sense of why.

Autumn colouration doesn’t happen to all deciduous trees everywhere. It happens in temperate regions only. In other regions deciduous tree leaves usually just turn brown and fall off. Brown merely indicates dead cells.

Yellow and red and their various shades make autumn a visual feast. And they do represent two different mechanisms of colouration. Interestingly, their geographical distribution is also different. Yellow dominates the European autumn whereas North American deciduous trees usually go red.

Colours in plants are associated with pigments. The universal chlorophyll imparts green colour to normal foliage by absorbing other wavelengths. Shades of yellow and orange come from another type of pigment – carotenoids. These pigments are present all the time but the dominating chlorophyll masks their colour. Chlorophyll decays faster during autumn. This process unmasks the yellow-orange of the carotenoids.

The red colour comes from an entirely different mechanism. The pigment anthocyanin, responsible for the red colour, is produced during autumn as chlorophyll levels are falling. Anthocyanins also give red colour to fruits, but they are produced in the leaves of only certain species.

The reason for yellow colour is pretty obvious from the above. Winter is a period where temperate life switches to maintenance mode. Metabolism is at an all time low. Animals prefer to stay quiet. Invertebrates find relatively warm areas under the ground surface or beneath the fallen leaves. Most mammals hibernate. Life practically comes to a standstill. Plants in such regions also go through their own hibernation though scientists use the term dormancy for them. The idea is to somehow just survive the winter. Autumn is the time to prepare for that.

If you have enough food stored for survival, why spend energy making food? The fuel supply (sunlight) is also not encouraging. Let’s shut down photosynthesis factories and eventually dismantle them. But the leaves possess many useful nutrients. Though eventually everything goes into the soil and enriches the earth’s life system, the tree wants to retain some of the nutrients for itself – notably the precious nitrogen. Chlorophyll content of the leaves decrease for this reason in the autumn. The shades of yellow and orange of carotenoids – masked hitherto – show up.

The red colour is puzzling because the pigment responsible – anthocyanin – is actually produced in autumn. Why would the tree spend energy producing something when there is actually a need to conserve energy?

There are many theories. Some say that their antioxidant behaviour and/or absorption of harmful high energy rays prevent destruction of photosynthetic plant tissues. But why would plants want to protect photosynthetic structures in leaves that are about to fall? Carotenoids attract aphids that suck sap from leaves. Red colours in evolved species could help repel such insects, says one theory. Another reason given is that anthocyanin in leaves helps trees resorb more nitrogen in the trunks and less in the decaying leaves thus conserving the valuable resource.

They may be serving to warn the animals to prepare for the winter. The red colour could dissuade herbivore predators from eating the leaves, but this ecological reason appears to be more valid for young red leaves especially in the tropics than for the senescing autumn leaves of the temperate regions.

It could be a signal for animals to start preparing for the winter. Birds migrate to warmer parts of the globe. Animals such as squirrels store acorns and nuts for the winter. Bats breed during winter hibernation. Early autumn is mating time for them. The males show off their singing skills. Many other animals too have a last hurrah in the autumn before going quiet. The appearance of red, as per one theory, could simply be a warning for animals to go look somewhere else for survival. ‘Beware! We are about to fall.’

Whatever the motive, as the life’s sun goes down, o falling leaves, you brighten up my remaining soul just as Tagore wishes:

“ostorobi laagak poroshmoni
praaner momo shesher sombole
jharaa paata”

“Arthouse or commercial?”

There you go. Pigeonholing starts from the day you conceive a film and reveal your idea to a friend. There isn’t any shade of grey available. It has to be black or white.

You would hope that this is a layman’s view on cinema. But you will be surprised to see most insiders too resorting to such stereotyping. As a filmmaker, I struggled initially with this concept. Then I tried hard that my movie doesn’t get either of the labels. Finally, I completely ignored this notion and that was the wisest thing to do. Why even worry about a categorization that you don’t believe in?

Really, how does one define “parallel” or “mainstream” – specially at the production stage?

If “parallel” means ‘realistic’, no cinema is realistic. Cinema works like a magician’s trick. A perception is created using images and sound. A filmmaker tries hard to present to the viewer the vision he has in his mind. His vision is never fully represented because of several constraints of filmmaking. But he tries to get as close as possible. He does not aim to achieve reality. ‘Realism’ is used, just as a magician does, only to trick a viewer so that he ‘feels’ the movie and not just ‘sees’ and ‘hears’ it. You don’t have background score in real life. So why then adding a song makes a film “commercial”? A song is as much a part of sound design (and in some cases visual design) of a film as is the background score.

Some say that films which are made for festivals are “arthouse”. I find it difficult to imagine that any filmmaker will set out to restrict his film to festival audience only. Filmmaking is one hell of a job. It not only requires extraordinary diligence and patience, it puts enormous strain on your finances and relationships too, particularly if you are new to the game. Who would not want the outcome to be seen and appreciated by many after all that?

The terms ‘mainstream’ and ‘parallel’ represent two extremes of audience-centric and filmmaker-centric films respectively. Any random film will sit somewhere in this spectrum and very rarely at any of the end-points. So in reality it’s almost always a shade of grey.

It eventually comes down to the balance a filmmaker settles at between what he has to offer and what he thinks the audience will like. Or the degree to which a filmmaker surrenders to his perception of what the public wants. Now the fact that he could go wrong with feeling the public’s pulse is a different matter. Each filmmaker is different in where he strikes this balance. As the audience evolves with time, what they like and what the filmmaker has to offer aren’t always very different from one-another.

What the audience like in films depends on a number of factors:

– star(s)
– story
– presentation
– production value
– genre
– other factors intrinsic to the film (that might be escaping me now)

And finally there is this extrinsic factor ‘nothing succeeds like success’.

Of the intrinsic factors, stars and production value have a huge impact on the purse. The extrinsic ‘buzz’ factor is increasingly being controlled by marketing these days. Naturally therefore films leaning towards the ‘mainstream’ side of the scale are big budget films by big studios who can take care of all the factors which makes a film ‘likely to be’ liked by majority of the audience.

We are however entering an era where smart filmmaking is increasingly being rewarded. It’s about playing to your strengths in the areas you can control and mitigating risks associated with areas you cannot influence. And that gives one hope that everything after all is not just about money.

Baptism by Fire?

Fire destructs. Not always though. Ask the scientists who suggested that invention of cooking was a watershed moment in human evolution. They attribute increase in human brain size to fire – the use of fire. Good on those ancestors then who first chose to play with fire. We wouldn’t be us without them.

Devastating forces are all around us. The key lies in control. We have learned to control fire and make use of it. This risk taking has brought dividends to us. Did life come out of similar such risk taking in the first place?

What do we really mean by fire? Two substances – oxygen and fuel – cause fire when they come together in presence of heat. When the heat reaches a threshold, it triggers the first oxidation reaction. The fuel breaks down into simpler chemicals. The reaction is exothermic meaning it gives out energy. The energy in the form of heat triggers the next fuel molecule to ‘burn’ and a chain reaction begins. It ends with exhaustion of either oxygen or the fuel or when some external factor draws energy out of the system. The ‘light’ part of the energy makes us see the fire as flames. The end products of the chain reaction are water and carbon dioxide that go up in the atmosphere.

Do the two substances remind us of something close to our hearts? Our cells run a similar process with sugar as fuel and oxygen. We consume sugar as food and breathe in oxygen as air. The end products are water and carbon dioxide and a whole heap of energy in the form of ATP molecules. You got it right. The process is cellular respiration.

Alright, so you’ve noticed my clever omission of the role of heat in the above cellular process. The energy part is the real trick here that makes ‘life’ so interesting. Here is how.

We take in the sugar and the oxygen. Both are produced by the plants. In that sense we animals are parasites though science does not label us as such. The plant, via another outstanding life process photosynthesis, binds the light energy into sugar molecules. If we see the life in totality, the energy consumption part of the process happens in the plants. The strong chemical bonds of sugar molecules store the energy. During respiration, that stored bond energy is released which drives us to ‘burn’ more sugars.

The fire at the cell level is that photon which life has learned to control and capture and make use of to produce food for its processes. Life’s evolution, if not the origin, is thus fuelled by fire in the form of sunlight – the only regular external input into the earth system. Some primitive form of life – perhaps some microbe – first dared to play with that fire and here we are today, alive and kicking.